Evaluation of Precision Time Synchronisation Methods for Substation Applications

David M. E. Ingram, QUT Pascal Schaub, Powerlink Queensland Duncan A. Campbell, QUT Richard R. Taylor, QUT

Queensland University of Technology Brisbane Australia ISPCS 2012 San Francisco, USA

CRICOS No. 00213J

Presentation Outline

- High voltage substations
 - Substation applications
 - Synchronisation requirements
- Synchronisation methods
- Performance tests
- Discussion of results
- Conclusions

Transmission Substations

Aerial photograph from NearMap Pty Ltd (www.nearmap.com)

ISPCS 2012 San Francisco, USA

Transmission Substations

Aerial photograph from NearMap Pty Ltd (www.nearmap.com)

ISPCS 2012 San Francisco, USA

The Need for Accurate Synchronisation

- Power system incident investigation
- Phasor monitoring (magnitude & angle)
- Process bus sample synchronisation

Performance Requirements

Process Bus

IEC 61850-5 timing classes

 UCA "9-2LE" requires ±1 µs to meet P2 (overall accuracy).

Prot. Class	Required Accuracy	Timing Class (Ed .1 / 2)
P1	± 25 µs	T3 / TS3
P2	±4 μs	T4 / TS4
P3	±1μs	T5 / TS5

Synchrophasors

IEEE Std C37.118.1 'Total Vector Error' <1%.

- 26 µs (60 Hz) or 31 µs (50 Hz) if no magnitude error or CT/VT phase error.
- Suggested in several papers that ±1 µs be used as synchronisation accuracy.

Test Equipment

Time Synchronisation Methods

- One pulse per second (1PPS)
 - The simplest method
- IRIG-B
 - Widely used substation timing
- IEEE 1588 Precision Time Protocol (PTP)
 - The "power profile" specified in IEEE Std C37.238 was used.

Time	Length	2-Step	Correction	Info
0.7807	82	False	0	Announce Message
0.7815	i 64	True	0	Sync Message
1.0201	. 72	True	0	Path_Delay_Resp Message
1.0230	72	False	0	Path_Delay_Resp_Follow_Up Message
1.0360	64	False	3361370	Follow_Up Message
1.6689	72	False	0	Path_Delay_Req Message
1.6723	72	False	0	Path_Delay_Req Message
1.8040	64	True	0	Sync Message
2.0439	72	True	0	Path_Delay_Resp Message
2.0470	72	False	0	Path_Delay_Resp_Follow_Up Message
2.0593	82	False	0	Announce Message
2.0617	64	False	2101865	Follow_Up Message
2.6770	72	False	0	Path_Delay_Req Message
2.6811	. 72	False	0	Path_Delay_Req Message
2.8279	64	True	0	Sync Message

PTP Message Parameters

Parameter	Setting
Sync message rate	1 s
Announce message rate	1 s
Path delay mechanism	Peer to peer
Path delay message rate	1 s
Line rate	100 Mb/s
Message type	Layer 2 multicast

One Pulse per Second

Bimodal IRIG-B

IRIG-B (Master B) - 66 m Fibre

Precision Time Protocol

Statistical Analysis

Method	66 m Fibre	998 m Fibre
Predicted Delay	$t_d = 330 \ ns$	$t_d = 4493 ns$
1-PPS	$\begin{array}{l} \Delta \overline{t_d} = 351 \ ns \\ s_{t_d} = 0.561 \ ns \end{array}$	$\begin{array}{l} \Delta \overline{t_d} = 5048 \ ns \\ s_{t_d} = 1.23 \ ns \end{array}$
IRIG-B Master A	$\begin{array}{l} \Delta \overline{t_d} = 361 \ ns \\ s_{t_d} = 52.3 \ ns \end{array}$	$\begin{array}{l} \Delta \overline{t_d} = 5054 \ ns \\ s_{t_d} = 52.0 \ ns \end{array}$
IRIG-B Master B	$\begin{array}{l} \Delta \overline{t_d} = 352 \ ns \\ s_{t_d} = 24.6 \ ns \end{array}$	$\begin{array}{l} \Delta \overline{t_d} = 5015 \ ns \\ s_{t_d} = 25.6 \ ns \end{array}$
PTP Master A	$\begin{array}{l} \Delta \overline{t_d} = 0.904 \ ns \\ s_{t_d} = 73.6 \ ns \end{array}$	$\begin{array}{l} \Delta \overline{t_d} = -1.62 \ ns \\ s_{t_d} = 52.1 \ ns \end{array}$
PTP Master B	$\begin{array}{l} \Delta \overline{t_d} = 21.2 \ ns \\ s_{t_d} = 26.8 \ ns \end{array}$	$\begin{array}{l} \Delta \overline{t_d} = 34.1 \ ns \\ s_{t_d} = 30.0 \ ns \end{array}$

Discussion – Performance

- 1-PPS provides the least jitter:
 - No 'time of day' information
- IRIG-B can meet ±1 µs requirements

- No compensation for propagation delay
- PTP with C37.238 meets ±1 µs requirements
 - Compensates for propagation delay
 - Supports redundancy of grandmasters

Discussion – Signal Distribution

- Optical cable used to take signals out to the switchyard.
- 1-PPS and IRIG-B require multiport repeaters
 - Introduces error
 - OTDR cannot see through repeater
- PTP with C37.238 requires transparent clocks
 - Can share Ethernet with process bus or PMU connection.

Discussion – Compatibility

- 1-PPS is most compatible, but least information
- IRIG-B clients can have mutually incompatible requirements
 - Local time vs UTC
- PTP + C37.238 has limited options
 - Improves compatibility of grandmasters and slave clocks
 - Must use TAI as time reference

	IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems	
S	EEEE Standard Profile for Use of IEEE Standard Procision Time Protocol In Power System Applications	IEEE
	IEEE Power & Energy Society Sponsord by the Pome Saturn Keleying Committee Substations Committee	
	34 2017 2011	

Conclusions

- 1-PPS and IRIG-B can be used for small substations, or where merging units are in the control room.
- PTP overcomes shortcomings of 1-PPS and IRIG-B for large substations.
- PTP benefits are not at the expense of synchronising performance.
 - Similar performance between IRIG-B and PTP from the same clock hardware

Project Sponsorship & Funding

 Project sponsorship by Powerlink Queensland.

Australian Government

Department of Education, Employment and Workplace Relations

Queensland University of Technology Brisbane Australia

Acknowledgments

Equipment support from

• 1 | 1 • 1 | 1 • CISCO ...

is appreciated.

Queensland University of Technology Brisbane Australia