

Queensland University of Technology Brisbane Australia

Assessment of Real-Time Networks and Timing for Process Bus Applications

Paper Reference 147_AU_Ingram

Author	Organisation	Email	Presenter
David Ingram	Queensland University of Technology (QUT)	david.ingram@ieee.org	~
Pascal Schaub	QGC Pty Ltd	pascal.schaub@bg-group.com	
Duncan Campbell	QUT	da.campbell@qut.edu.au	
Richard Taylor	QUT	rr.taylor@qut.edu.au	

© CIGRE Australia AP B5 SEAPAC 2013 Slide 2

Process Bus Test Bed

(C) 2013 David Ingram

Measuring Ethernet Switch Latency

Effect of Outbound GOOSE on Sampled Values

Merging Unit Performance

Queensland University of Technology Brisbane Australia

Figures © 2012 IEEE, reproduced with permission from doi:10.1109/TII.2012.2228874

Measuring PTP Performance

Queensland University of Technology Brisbane Australia

Sync performance of PTP devices

PC

1-PPS

1-PPS

Effect of sampled Value traffic on PTP performance

Figures © 2012 IEEE, reproduced with permission from doi:10.1109/TIM.2013.2245188

PTP Clock Performance

Figure © 2012 IEEE, reproduced with permission from doi:10.1109/TIM.2013.2245188

Grandmaster Drift

Queensland University of Technology Brisbane Australia

Without Redundancy

With Redundancy

Transparent Clock Assessment

(C) 2013 David Ingram

Downloaded from ingram.id.au

Slide 9

Interaction of Sampled Values & PTP

(C) 2013 David Ingram

Downloaded from ingram.id.au

Protection System Performance

Conclusions

- Quality of GM & slave directly affects sync performance
- Interactions are a non-issue
 - Transparent clocks required for PTP
 Outbound GOOSE & inbound SV do not interact
- Most latency created at first switch
- Protection performance
 - $_{\odot}$ Sampled values similar speed to conventional CTs $_{\odot}$ GOOSE \sim 3 ms faster than relay contacts
- Multivendor process bus works!

Acknowledgements

Queensland University of Technology Brisbane Australia

• Project support

Australian Government

Department of Education, Employment and Workplace Relations

Queensland University of Technology Brisbane Australia

111111

CISCO

Equipment support

