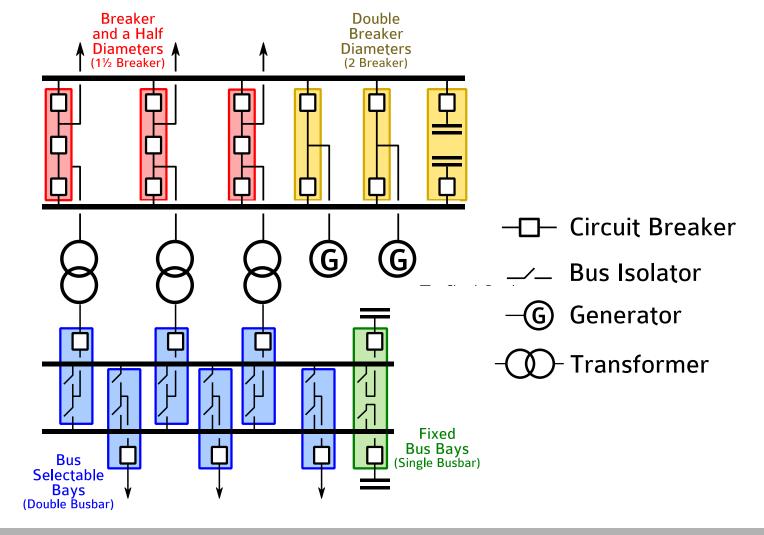
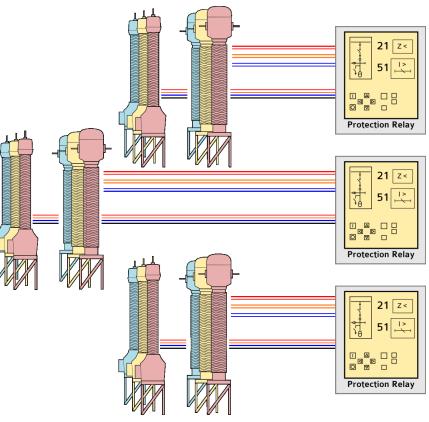
Multicast Traffic Filtering for Sampled Value Process Bus Networks

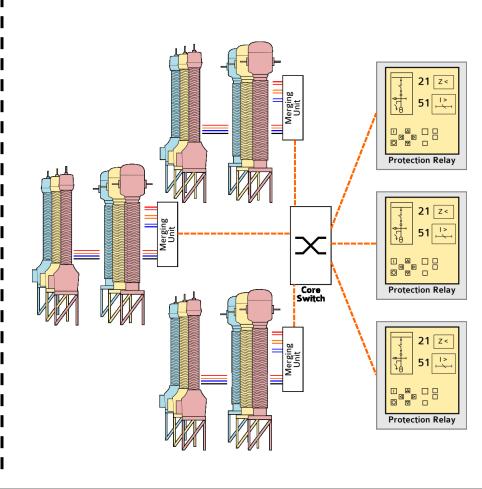
David M. E. Ingram
Pascal Schaub
Duncan A. Campbell



Presentation Outline

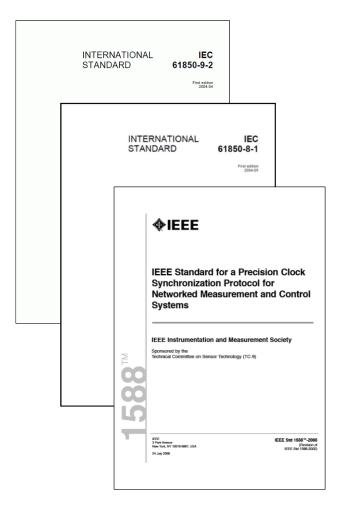
- High voltage substations
 - Terminology
 - Field connections to the control system
- Ethernet
 - Message types
 - Addressing
- Reference Designator based addressing
 - Subscriber example


Substation 'Bays' and 'Diameters'



Process Connections

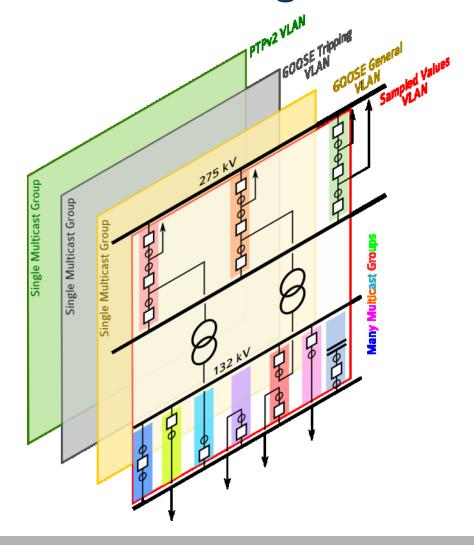
Process Bus (new)


Ethernet Message Types

- Unicast
 - Convention one-to-one communication
- Broadcast
 - One-to-all communication
 - Cannot be filtered
- Multicast
 - One-to-many communication
 - Filtering can limit transmission of messages
 - Special destination addresses are used

Process Bus Protocols

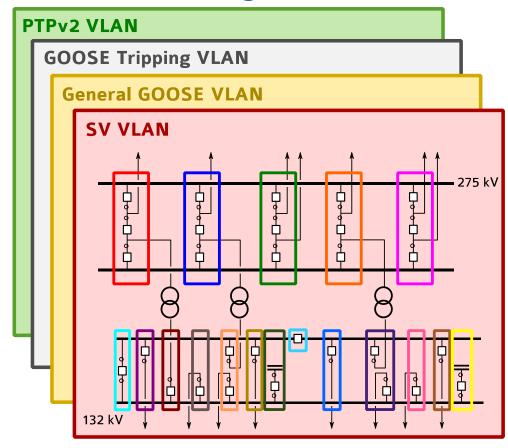
- Sampled Values (61850-9-2)
 - Raw currents and voltages
- GOOSE (61850-8-1)
 - Digital events & alarms
 - Transduced voltages and currents
 - Circuit breaker tripping
- PTP (IEEE Std 1588)
 - Time synchronisation
- All multicast protocols


The Problem

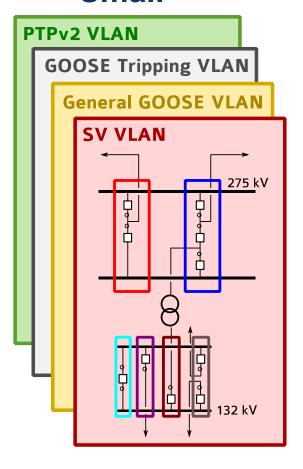
- One 'whole of substation' process bus in China
 - Traffic not a concern for point-point process bus
- Need to develop a robust solution
 - Whole of substation process bus is the way of the future.
- No clear way to partition SV traffic into groups
- Two schools of thought: Functional & Locational
 - Locational provides clear link between source of data and the destination address

VLANs and Multicast Filtering

- VLANs separate classes of traffic.
 - IEEE Std 802.1Q
- Multicast groups separate traffic within the classes.
 - Multicast groups most important with Sampled Values.


Our Proposal

- Standardised VLANs provide prioritisation
 - Consistent across an enterprise
- Multicast groups are site specific
- Multicast traffic groups based on diameter/bay.
 - Location based approach
- Relays need 2-4 CTs for 1½CB and 2CB
 - Reduces number of groups required



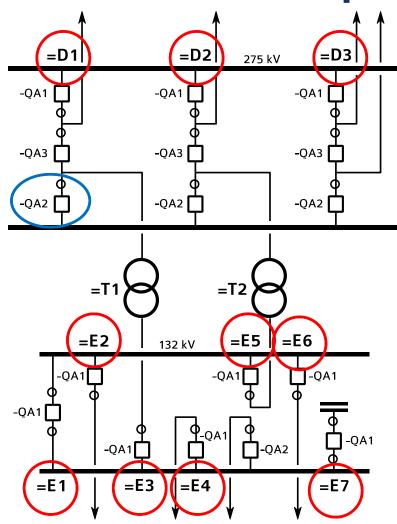
275/132 kV Substations (Transmission)

Large

Small

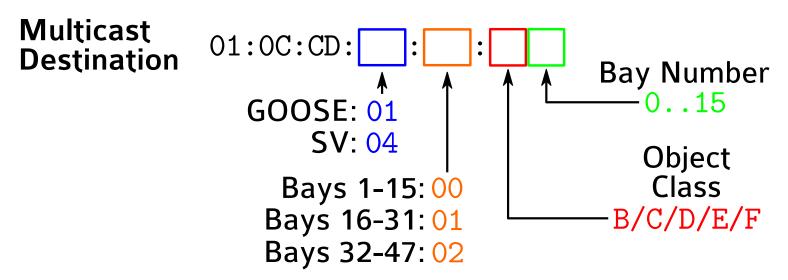
IEC 61346 and Voltage Levels

Code	Voltage Range	Code	Voltage Range
В	> 420 kV	Н	30 kV < 45 kV
С	380 kV 420 kV	J	20 kV < 30 kV
D	220 kV < 380 kV	K	10 kV < 20 kV
E	110 kV < 220 kV	L	6 kV < 10 kV
F	60 kV < 110 kV	M	1 kV < 6 kV
G	45 kV < 60 kV	N	< 1 kV



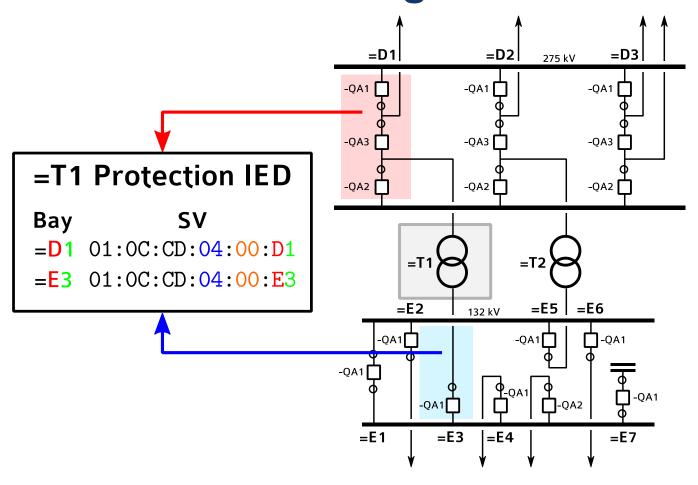
IEC 61346 Example

275 kV \rightarrow "D"


=D1-QA2 Specific circuit breaker

> 132 kV → "E"

=D1, =D2, =E2 ... Diameter or Bay Designators


Designator → **Address Mapping**

Bay	GOOSE	SV
=C2	01:0C:CD:01:00:C2	01:0C:CD:04:00:C2
=D12	01:0C:CD:01:00:DC	01:0C:CD:04:00:DC
= D 40	01:0C:CD:01:02:D8	01:0C:CD:04:02:D8
= E 20	01:0C:CD:01:00:C2 01:0C:CD:01:00:DC 01:0C:CD:01:02:D8 01:0C:CD:01:01:E4	01:0C:CD:04:01:E4

Subscriber Configuration

Sample Switch Configuration

VID	VLAN Name	Forbidden Ports
1	Management	1-23
81	GOOSE Trip	18-24
82	GOOSE General	18-24
92	Sampled Values	12-24
1588	PTPv2	18-23

MAC A	ddress	VID	CoS	Ports	Comment
01-0C-CD	-04-00-D1	9	High	1,6	=D1 Fdr & =T1 Tfmr Prot
01-0C-CL	-04-00-DZ	9	High	2,9	=DZ Fdr & =IZ IMTr Prot
01-0C-CD	-04-00-D3	9	High	3	=D3 Feeder Protection
01-0C-CD	-04-00-E1	9	High	4	=E1 Bus Coupler Protection
01 0C CE	04 00 E2	Ģ	High	5	-E2 Feeder Protection
01-0C-CD	-04-00-E3	9	High	6	=T1 Transformer Protection
01-0C-CL	-04-00-E4	9	High	1	=E4 Feeder Protection
01-0C-CD	-04-00-E5	9	High	8,9	=E5 Fdr & =T2 Tfmr Prot
01-0C-CD	-04-00-E6	9	High	10	=E6 Feeder Protection
01-0C-CD	-04-00-E7	9	High	11	=E7 Capacitor Protection

Summary

- Process buses have many protocols sharing the one network.
- Prioritisation/segregation by function uses VLANs.
- Addresses based on reference designators are 'human readable'.
- Filtering minimises network load for individual devices.
- Consistent network design will simplify commissioning, testing and fault finding.

Queensland University of TechnologyBrisbane Australia